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From an analysis of actual cases, three categories of bias in computer systems have been
developed: preexisting, technical, and emergent. Preexisting bias has its roots in social
institutions, practices, and attitudes. Technical bias arises from technical constraints or
considerations. Emergent bias arises in a context of use. Although others have pointed to bias
in particular computer systems and have noted the general problem, we know of no com-
parable work that examines this phenomenon comprehensively and which offers a framework
for understanding and remedying it. We conclude by suggesting that freedom from bias should
be counted among the select set of criteria—including reliability, accuracy, and efficiency—
according to which the quality of systems in use in society should be judged.
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INTRODUCTION

To introduce what bias in computer systems might look like, consider the
case of computerized airline reservation systems, which are used widely by
travel agents to identify and reserve airline flights for their customers.
These reservation systems seem straightforward. When a travel agent
types in a customer’s travel requirements, the reservation system searches
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a database of flights and retrieves all reasonable flight options that meet or
come close to the customer’s requirements. These options then are ranked
according to various criteria, giving priority to nonstop flights, more direct
routes, and minimal total travel time. The ranked flight options are
displayed for the travel agent. In the 1980s, however, most of the airlines
brought before the Antitrust Division of the United States Justice Depart-
ment allegations of anticompetitive practices by American and United
Airlines whose reservation systems—Sabre and Apollo, respectively—dom-
inated the field. It was claimed, among other things, that the two reserva-
tions systems are biased [Schrifin 1985].
One source of this alleged bias lies in Sabre’s and Apollo’s algorithms for

controlling search and display functions. In the algorithms, preference is
given to “on-line” flights, that is, flights with all segments on a single
carrier. Imagine, then, a traveler who originates in Phoenix and flies the
first segment of a round-trip overseas journey to London on American
Airlines, changing planes in New York. All other things being equal, the
British Airlines’ flight from New York to London would be ranked lower
than the American Airlines’ flight from New York to London even though in
both cases a traveler is similarly inconvenienced by changing planes and
checking through customs. Thus, the computer systems systematically
downgrade and, hence, are biased against international carriers who fly
few, if any, internal U.S. flights, and against internal carriers who do not
fly international flights [Fotos 1988; Ott 1988].
Critics also have been concerned with two other problems. One is that the

interface design compounds the bias in the reservation systems. Lists of
ranked flight options are displayed screen by screen. Each screen displays
only two to five options. The advantage to a carrier of having its flights
shown on the first screen is enormous since 90% of the tickets booked by
travel agents are booked by the first screen display [Taib 1990]. Even if the
biased algorithm and interface give only a small percent advantage overall
to one airline, it can make the difference to its competitors between
survival and bankruptcy. A second problem arises from the travelers’
perspective. When travelers contract with an independent third party—a
travel agent—to determine travel plans, travelers have good reason to
assume they are being informed accurately of their travel options; in many
situations, that does not happen.
As Sabre and Apollo illustrate, biases in computer systems can be

difficult to identify let alone remedy because of the way the technology
engages and extenuates them. Computer systems, for instance, are compar-
atively inexpensive to disseminate, and thus, once developed, a biased
system has the potential for widespread impact. If the system becomes a
standard in the field, the bias becomes pervasive. If the system is complex,
and most are, biases can remain hidden in the code, difficult to pinpoint or
explicate, and not necessarily disclosed to users or their clients. Further-
more, unlike in our dealings with biased individuals with whom a potential
victim can negotiate, biased systems offer no equivalent means for appeal.
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Although others have pointed to bias in particular computer systems and
have noted the general problem [Johnson and Mulvey 1993; Moor 1985], we
know of no comparable work that focuses exclusively on this phenomenon
and examines it comprehensively.
In this article, we provide a framework for understanding bias in

computer systems. From an analysis of actual computer systems, we have
developed three categories: preexisting bias, technical bias, and emergent
bias. Preexisting bias has its roots in social institutions, practices, and
attitudes. Technical bias arises from technical constraints or consider-
ations. Emergent bias arises in a context of use. We begin by defining bias
and explicating each category and then move to case studies. We conclude
with remarks about how bias in computer systems can be remedied.

1. WHAT IS A BIASED COMPUTER SYSTEM?

In its most general sense, the term bias means simply “slant.” Given this
undifferentiated usage, at times the term is applied with relatively neutral
content. A grocery shopper, for example, can be “biased” by not buying
damaged fruit. At other times, the term bias is applied with significant
moral meaning. An employer, for example, can be “biased” by refusing to
hire minorities. In this article we focus on instances of the latter, for if one
wants to develop criteria for judging the quality of systems in use—which
we do—then criteria must be delineated in ways that speak robustly yet
precisely to relevant social matters. Focusing on bias of moral import does
just that.
Accordingly, we use the term bias to refer to computer systems that

systematically and unfairly discriminate against certain individuals or
groups of individuals in favor of others. A system discriminates unfairly if
it denies an opportunity or a good or if it assigns an undesirable outcome to
an individual or group of individuals on grounds that are unreasonable or
inappropriate. Consider, for example, an automated credit advisor that
assists in the decision of whether or not to extend credit to a particular
applicant. If the advisor denies credit to individuals with consistently poor
payment records we do not judge the system to be biased because it is
reasonable and appropriate for a credit company to want to avoid extending
credit privileges to people who consistently do not pay their bills. In
contrast, a credit advisor that systematically assigns poor credit ratings to
individuals with ethnic surnames discriminates on grounds that are not
relevant to credit assessments and, hence, discriminates unfairly.
Two points follow. First, unfair discrimination alone does not give rise to

bias unless it occurs systematically. Consider again the automated credit
advisor. Imagine a random glitch in the system which changes in an
isolated case information in a copy of the credit record for an applicant who
happens to have an ethnic surname. The change in information causes a
downgrading of this applicant’s rating. While this applicant experiences
unfair discrimination resulting from this random glitch, the applicant could
have been anybody. In a repeat incident, the same applicant or others with
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similar ethnicity would not be in a special position to be singled out. Thus,
while the system is prone to random error, it is not biased.
Second, systematic discrimination does not establish bias unless it is

joined with an unfair outcome. A case in point is the Persian Gulf War,
where United States Patriot missiles were used to detect and intercept
Iraqi Scud missiles. At least one software error identified during the war
contributed to systematically poor performance by the Patriots [Gao 1992].
Calculations used to predict the location of a Scud depended in complex
ways on the Patriots’ internal clock. The longer the Patriot’s continuous
running time, the greater the imprecision in the calculation. The deaths of
at least 28 Americans in Dhahran can be traced to this software error,
which systematically degraded the accuracy of Patriot missiles. While we
are not minimizing the serious consequence of this systematic computer
error, it falls outside of our analysis because it does not involve unfairness.

2. FRAMEWORK FOR ANALYZING BIAS IN COMPUTER SYSTEMS

We derived our framework by examining actual computer systems for bias.
Instances of bias were identified and characterized according to their
source, and then the characterizations were generalized to more abstract
categories. These categories were further refined by their application to
other instances of bias in the same or additional computer systems. In most
cases, our knowledge of particular systems came from the published
literature. In total, we examined 17 computer systems from diverse fields
including banking, commerce, computer science, education, medicine, and
law.
The framework that emerged from this methodology is comprised of three

overarching categories—preexisting bias, technical bias, and emergent
bias. Table I contains a detailed description of each category. In more
general terms, they can be described as follows.

2.1 Preexisting Bias

Preexisting bias has its roots in social institutions, practices, and attitudes.
When computer systems embody biases that exist independently, and
usually prior to the creation of the system, then we say that the system
embodies preexisting bias. Preexisting biases may originate in society at
large, in subcultures, and in formal or informal, private or public organiza-
tions and institutions. They can also reflect the personal biases of individ-
uals who have significant input into the design of the system, such as the
client or system designer. This type of bias can enter a system either
through the explicit and conscious efforts of individuals or institutions, or
implicitly and unconsciously, even in spite of the best of intentions. For
example, imagine an expert system that advises on loan applications. In
determining an applicant’s credit risk, the automated loan advisor nega-
tively weights applicants who live in “undesirable” locations, such as
low-income or high-crime neighborhoods, as indicated by their home ad-
dresses (a practice referred to as “red-lining”). To the extent the program

Bias in Computer Systems • 333

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.



Table I. Categories of Bias in Computer System Design

These categories describe ways in which bias can arise in the design of computer systems. The
illustrative examples portray plausible cases of bias.

1. Preexisting Bias
Preexisting bias has its roots in social institutions, practices, and attitudes.
When computer systems embody biases that exist independently, and usually prior to the
creation of the system, then the system exemplifies preexisting bias. Preexisting bias can
enter a system either through the explicit and conscious efforts of individuals or institutions,
or implicitly and unconsciously, even in spite of the best of intentions.

1.1. Individual
Bias that originates from individuals who have significant input into the design of the
system, such as the client commissioning the design or the system designer (e.g., a client
embeds personal racial biases into the specifications for loan approval software).

1.2 Societal
Bias that originates from society at large, such as from organizations (e.g., industry),
institutions (e.g., legal systems), or culture at large (e.g., gender biases present in the
larger society that lead to the development of educational software that overall appeals
more to boys than girls).

2. Technical Bias
Technical bias arises from technical constraints or technical considerations.

2.1 Computer Tools
Bias that originates from a limitation of the computer technology including hardware,
software, and peripherals (e.g., in a database for matching organ donors with potential
transplant recipients certain individuals retrieved and displayed on initial screens are
favored systematically for a match over individuals displayed on later screens).

2.2 Decontextualized Algorithms
Bias that originates from the use of an algorithm that fails to treat all groups fairly under
all significant conditions (e.g., a scheduling algorithm that schedules airplanes for take-off
relies on the alphabetic listing of the airlines to rank order flights ready within a given
period of time).

2.3 Random Number Generation
Bias that originates from imperfections in pseudorandom number generation or in the
misuse of pseudorandom numbers (e.g., an imperfection in a random-number generator
used to select recipients for a scarce drug leads systematically to favoring individuals
toward the end of the database).

2.4 Formalization of Human Constructs
Bias that originates from attempts to make human constructs such as discourse,
judgments, or intuitions amenable to computers: when we quantify the qualitative,
discretize the continuous, or formalize the nonformal (e.g., a legal expert system advises
defendants on whether or not to plea bargain by assuming that law can be spelled out in
an unambiguous manner that is not subject to human and humane interpretations in
context).
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embeds the biases of clients or designers who seek to avoid certain
applicants on the basis of group stereotypes, the automated loan advisor’s
bias is preexisting.

2.2 Technical Bias

In contrast to preexisting bias, technical bias arises from the resolution of
issues in the technical design. Sources of technical bias can be found in
several aspects of the design process, including limitations of computer
tools such as hardware, software, and peripherals; the process of ascribing
social meaning to algorithms developed out of context; imperfections in
pseudorandom number generation; and the attempt to make human con-
structs amenable to computers, when we quantify the qualitative, dis-
cretize the continuous, or formalize the nonformal. As an illustration,
consider again the case of Sabre and Apollo described above. A technical
constraint imposed by the size of the monitor screen forces a piecemeal
presentation of flight options and, thus, makes the algorithm chosen to

Table I. Continued

These categories describe ways in which bias can arise in the design of computer systems. The
illustrative examples portray plausible cases of bias.

3. Emergent Bias
Emergent bias arises in a context of use with real users. This bias typically emerges some
time after a design is completed, as a result of changing societal knowledge, population, or
cultural values. User interfaces are likely to be particularly prone to emergent bias because
interfaces by design seek to reflect the capacities, character, and habits of prospective users.
Thus, a shift in context of use may well create difficulties for a new set of users.

3.1 New Societal Knowledge
Bias that originates from the emergence of new knowledge in society that cannot be or is
not incorporated into the system design (e.g., a medical expert system for AIDS patients
has no mechanism for incorporating cutting-edge medical discoveries that affect how
individuals with certain symptoms should be treated).

3.2 Mismatch between Users and System Design
Bias that originates when the population using the system differs on some significant
dimension from the population assumed as users in the design.

3.2.1 Different Expertise
Bias that originates when the system is used by a population with a different knowledge
base from that assumed in the design (e.g., an ATM with an interface that makes
extensive use of written instructions—“place the card, magnetic tape side down, in the
slot to your left”—is installed in a neighborhood with primarily a nonliterate
population).

3.2.2 Different Values
Bias that originates when the system is used by a population with different values than
those assumed in the design (e.g., educational software to teach mathematics concepts is
embedded in a game situation that rewards individualistic and competitive strategies,
but is used by students with a cultural background that largely eschews competition
and instead promotes cooperative endeavors).
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rank flight options critically important. Whatever ranking algorithm is
used, if it systematically places certain airlines’ flights on initial screens
and other airlines’ flights on later screens, the system will exhibit technical
bias.

2.3 Emergent Bias

While it is almost always possible to identify preexisting bias and technical
bias in a system design at the time of creation or implementation, emergent
bias arises only in a context of use. This bias typically emerges some time
after a design is completed, as a result of changing societal knowledge,
population, or cultural values. Using the example of an automated airline
reservation system, envision a hypothetical system designed for a group of
airlines all of whom serve national routes. Consider what might occur if
that system was extended to include international airlines. A flight-
ranking algorithm that favors on-line flights when applied in the original
context with national airlines leads to no systematic unfairness. However,
in the new context with international airlines, the automated system would
place these airlines at a disadvantage and, thus, comprise a case of
emergent bias. User interfaces are likely to be particularly prone to
emergent bias because interfaces by design seek to reflect the capacities,
character, and habits of prospective users. Thus, a shift in context of use
may well create difficulties for a new set of users.

3. APPLICATIONS OF THE FRAMEWORK

We now analyze actual computer systems in terms of the framework
introduced above. It should be understood that the systems we analyze are
by and large good ones, and our intention is not to undermine their
integrity. Rather, our intention is to develop the framework, show how it
can identify and clarify our understanding of bias in computer systems, and
establish its robustness through real-world cases.

3.1 The National Resident Match Program (NRMP)

The NRMP implements a centralized method for assigning medical school
graduates their first employment following graduation. The centralized
method of assigning medical students to hospital programs arose in the
1950s in response to the chaotic job placement process and on-going failure
of hospitals and students to arrive at optimal placements. During this early
period the matching was carried out by a mechanical card-sorting process,
but in 1974 electronic data processing was introduced to handle the entire
matching process. (For a history of the NRMP, see Graettinger and Peran-
son [1981a].) After reviewing applications and interviewing students, hos-
pital programs submit to the centralized program their ranked list of
students. Students do the same for hospital programs. Hospitals and
students are not permitted to make other arrangements with one another
or to attempt to directly influence each others’ rankings prior to the match.
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With the inputs from hospitals and students, the NRMP applies its
“Admissions Algorithm” to produce a match.
Over the years, the NRMP has been the subject of various criticisms. One

charges that the Admissions Algorithm systematically favors hospital
programs over medical students in cases of conflict [Graettinger and
Peranson 1981b; Roth 1984; Sudarshan and Zisook 1981; Williams et al.
1981]. Consider the example developed by Williams et al., which we
reproduce:

To generate a match from Table II, the NRMP algorithm first attempts
a so-called 1:1 run, in which concordances between the first choice of
students and programs are matched (this table was constructed so that
there would be none). The algorithm then moves to a 2:1 run, in which
the students’ second choices are tentatively run against the programs’
first choices. Both students are matched with their second-choice pro-
grams. This tentative run becomes final, since no students or program
is left unmatched. Matching is completed; both programs receive their
first choices, and both students their second choices.
The result of switching the positions of the students and programs in

the algorithm should be obvious. After the 1:1 run fails, the 2:1 run
under a switch would tentatively run the programs’ second choices
against the students’ first choices, thus matching both programs with
their second-choice students. Matching is again completed, but on this
run, both students receive their first choices, and the programs . . .
receive their second choices [Williams et al. 1981, p. 1165].

Does such preference for hospital programs reflect bias? We are inclined
to answer yes because in cases of conflict there does not appear to be a good
rationale for favoring hospital programs at the expense of students. More-
over, Graettinger and Peranson provide grounds for assessing the type of
bias. They write, “The constraint inherent in the NRMP algorithm, in
which preference is given to hospital choices when conflicts in rankings
occur, duplicates what happens in an actual admissions process without a
computerized matching program” [Graettinger and Peranson 1981b, p.
526]. Elsewhere, they write:

Changing the [Admissions] algorithm would imply changing the
NRMP’s role from one of passive facilitator to one in which the NRMP
would be intervening in the admissions process by imposing a different

Table II. The Simplest Case of Rank-Order Lists in which the Desires of Students and
Programs are in Conflict (Reprinted from Williams et al. [1991], by permission of the New

England Journal of Medicine)

Rank Order Student I Student II Program A Program B

1 Program A Program B Student II Student I
2 Program B Program A Student I Student II

Note: Each program in this example has a quota of one position.
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result than would be obtained without the matching program. This is
not the role for which the NRMP was intended [p. 526].

Thus, if the algorithm systematically and unfairly favors hospital over
student preferences, it does so because of design specifications and organi-
zational practices that predate the computer implementation. As such, the
NRMP embodies a preexisting bias.
Earlier versions of the NRMP have also been charged with bias against

married couples in cases where both the husband and wife were medical
students. When the NRMP was originally designed, few such couples
participated in the medical match process. Beginning, however, in the late
1970s and early 1980s more women entered medical schools, and not
surprisingly, more married couples sought medical appointments through
the NRMP. At this point, it was discovered that the original Admissions
Algorithm placed married couples at a disadvantage in achieving an
optimal placement as compared with their single peers [Roth 1984; 1990].
Roth describes the problem as follows:

Prior to the mid-1980s, couples participating in the match were re-
quired to specify one of their members as the “leading member,” and to
submit a rank ordering of positions for each member of the couple; that
is, a couple submitted two preference lists. The leading member was
matched to a position in the usual way, the preference list of the other
member of the couple was edited to remove distant positions, and the
second member was then matched if possible to a position in the same
vicinity as the leading member. It is easy to see how instabilities
[nonoptimum matches] would often result. Consider a couple whose
first choice is to have two particular jobs in Boston, and whose second
choice is to have two particular jobs in New York. Under the couples
algorithm, the leading member might be matched to his or her first
choice job in Boston, whereas the other member might be matched to
some undesirable job in Boston. If their preferred New York jobs
ranked this couple higher than students matched to those jobs, an
instability would now exist [Roth 1990, p. 1528].

In this example, once the leading member of the couple is assigned a match
in Boston no other geographic locations for the couple are considered. Thus,
a better overall match with a hospital in New York is missed. The point
here is that the bias—in this case emergent bias—against couples primar-
ily emerged when a shift occurred in the social conditions, namely, when
husband and wife medical students increasingly participated in the match
process.
Compare the above two charges of bias with a third one, which accuses

the NRMP of bias against hospitals in rural areas because of a consistent
placement pattern over the years in which urban hospitals are far more
successful in filling their positions than rural ones [Roth 1984; Sudarshan
and Zisook 1981]. The Admissions Algorithm does not take into account
geographic distribution when determining a match, considering only the
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ranked preferences of hospitals and students. Because the best teaching
hospitals tend to be in urban areas, the urban areas tend to fill their
positions far more effectively, and with better students, than rural hospi-
tals. Observing this uneven distribution some have concluded that the
NRMP is biased against rural hospitals in favor of urban ones. Is this so?
While we are committed to a stance against injustice, we do not think the

distinction between a rationally based discrimination and bias is always
easy to draw. In some cases, reasonable people might differ in their
judgments. In this case, we ourselves would shy away from viewing this as
a bias in the system because we think this discrimination can be defended
as having a reasonable basis. Namely, the discrimination reflects the
preferences of match participants, and it is reasonable in our view for
employment decisions to be determined largely by the choices of employers
and employees.
Bias in the NRMP is particularly troubling because of the system’s

centralized status. Most major hospitals agree to fill their positions with
the NRMP assignments. Thus, for an individual or couple to elect not to
participate in the NRMP is tantamount to forgoing the possibility of
placement in most hospital programs. In this manner, centralized comput-
ing systems with widespread use can hold users hostage to whatever biases
are embedded within the system.

3.2 A Multilevel Scheduling Algorithm (MLSA)

In timeshare computer systems many individuals make use of a single
computer. These systems face a common problem of how to schedule the
processing demands of the many individuals who make use of the processor
at the same time. When posed with how to share equitably a limited
resource, accepted social practice often points toward a first-come, first-
serve basis. But the practical shortcomings of this approach are readily
apparent. Imagine a person who uses the computer for interactive editing.
Such work entails many small jobs that take very little time to process.
Should another user with a large job requiring several minutes or hours of
computation come along, the first user would experience a noticeable delay
between execution of editing commands. Likely enough, frustrations would
run high, and users would be dissatisfied. Thus, a balance must be struck
between providing a reasonable response time and relatively efficient
computation speed of large and long-running programs.
Proposed by F. J. Corbato in the 1960’s, the MLSA represents one

algorithm to address this balance [Corbato et al. 1962]. This algorithm was
implemented in the CTSS timesharing system and in Multics. In brief, the
MLSA works as follows. When a new command is received, it is executed
for up to a quantum of time. If the process is not completed in that
quantum of time, then the process is placed in a queue for “longer-running
processes.” Other new commands, if present, then are processed. Only
when there are no new commands does the processor return to the process
left in the queue for longer-running processes. Execution of this process is
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continued for a larger quantum of time. If the process is not completed in
this larger quantum of time, then it is placed in yet another queue of “even
longer running processes.” And again, the processor returns to execute any
new commands and, after that, any processes in the queue for longer-
running processes. Only when there are no new commands and the queue
for longer-running processes is empty will the processor look to the queue
of even longer running processes for unfinished processes. In this manner
the MLSA gives processing attention to all processes as quickly as possible
that are beginning a new command. Thus, assuming the system is not
saturated with too many users, short-running processes are speedily pro-
cessed to completion. At the same time, however, in principle a long-
running process could wait all day to finish.
Does the balance between response time and computation speed of

long-running programs achieved by the MLSA systematically disadvantage
some users? To help answer this question, consider a situation in which
many people use a timeshare system at the same time on a regular basis.
Of these individuals, most use relatively small programs on relatively short
tasks, such as the interactive editing mentioned above. However, one or
two individuals consistently use the system to execute long-running pro-
grams. According to the MLSA, the long-running programs of these individ-
uals will necessarily end up with a lower priority than the short-running
tasks of the other users. Thus, in terms of overall service from the
processor, these individuals with long-running programs are systematically
disadvantaged. According to Corbato (electronic communication, December
17, 1993), in response to this situation, some users with long-running
programs uncovered the MLSA’s strategy and developed a counterstrategy:
by using a manual button to stop execution of a long-running process and a
moment later restarting the process from where it left off, users effectively
ran their long-running tasks in small chunks. Each small chunk, of course,
was placed by MLSA into the top priority queue and executed speedily.
Having established systematic discrimination in the MLSA, we next ask

whether this systematic discrimination is unfair. Consider that in other
sorts of mundane queuing situations, such as movies or banks, we gener-
ally perceive that the “first-come first-served” strategy is fairest. It is also
true that we can appreciate alternative strategies if they can complement
and replace the strategy. In supermarkets, for example, we can appreciate
express checkouts. But we likely would perceive as unfair a checkout
system in which customers with fewer than, say, 10 items in their baskets
could push ahead of anyone else in the line with more than ten items.
Similarly, it seems to us that by systematically favoring short jobs, the
MSLA violates the fairness preserved in the “first-come first-served”
strategy.
While a human context gave rise to the need for the scheduling algo-

rithm, it is important to understand that there was no prior bias against
individuals with longer-running jobs. That is, the algorithm’s bias did not
arise from social factors, say, to dissuade users from large computational
projects or to encourage interactive editing and debugging. Had this been
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the case, the bias would be preexisting. Rather the bias is technical, for the
algorithm arose in the attempt to satisfy a difficult technical requirement
to allocate a scare resource. It does so by giving processing attention to all
processes as quickly as possible.
Another algorithm might have eluded the MLSA’s form of technical bias by

balancing response time and long-running computations in a manner that did
not lead to systematic disadvantage for individuals with long-running pro-
grams. However, we also recognize that in the attempt to strike a balance
between two apparently conflicting claims on a processor, it may not be
possible to achieve a solution that is completely fair to all of those using the
system. In cases like the MLSA, an awareness may be needed that one group
is disadvantaged by the system, and an attempt made to minimize that
disadvantage from within the system or to address it by some other means.

3.3 The British Nationality Act Program (BNAP)

Before discussing bias in the BNAP, a bit of history. In 1981 the Thatcher
government passed the British Nationality Act as a means to redefine
British citizenship. The act defined three new categories: British citizen-
ship, citizenship of the British Dependent Territories, and British overseas
citizenship. Only full British citizens in the first category would have the
right to live in Britain. While the Thatcher government and some British
citizens defended the act, others raised objections. For example, within
Britain, according to The London Times, “The Labour Shadow Cabinet . . .
decided to oppose the Bill on the grounds that it contains elements of racial
and sexual discrimination” [Berlins and Hodges 1981, p. 1]. Similarly, in
India, the Hindustan Times reported (quoted by Fishlock [1981]):

Racial discrimination, by whatever name or device, is still discrimina-
tion of the most reprehensible kind. The Bill formalizes and legitimates
racism toward people of a different hue which reflects the xenophobic
paranoia that afflicts a section of British society today. The proposed
three tiers of citizenship are a fine sieve which will allow into Britain
only those of the desired racial stock.

Beginning in 1983, M. J. Sergot and his colleagues at the Imperial College,
University of London, undertook to translate the British Nationality Act into a
computer program so that “consequences of the act can be determined mecha-
nistically” [Sergot et al. 1986, p. 370].1 Critics have charged BNAP of gender
bias. Consider the following. One of the most compelling grounds for establish-
ing British citizenship is to have at least one parent who is a British citizen.
As specified in Section 50-(9) of the British Nationality Act itself and imple-

1 Although the program authors [Sergot et al. 1986] state “It was never our intention to
develop the implementation of the act into a fully functional program” (p. 371), it is difficult to
take their disclaimer entirely seriously. For in the same text the authors also state (as noted
above) that their goal is to translate the British Nationality Act so that “the consequences of
the act can be determined mechanistically” (p. 370), and they place their work in the context of
other legal expert systems designed for use with real users.
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mented in BNAP, “a man is the ‘father’ of only his legitimate children,
whereas a woman is the ‘mother’ of all her children, legitimate or not” [Sergot
et al. 1986, p. 375]. Consider then the instance of an unmarried man and
woman who live together with the children they have jointly conceived. If the
mother is a British citizen, and the father is not, then the children have one
parent who is considered a British citizen. But if the situation is reversed (that
is, if the father is a British citizen, and the mother is not), then the children
have no parents who are considered British citizens. Thus the British Nation-
ality Act is biased against the illegitimate descendants of British men. Accord-
ingly, to the extent the BNAP accurately represents the British Nationality
Act, the program embodies preexisting bias.
Two further concerns with the BNAP can be understood in terms of

emergent bias. First, the system was designed in a research environment,
among people with sophisticated knowledge of immigration law. Its users,
however, are likely to be at best paralegal or immigration counselors in
Britain, if not lay persons in foreign countries with only limited access to
British legal expertise. A problem thus arises for nonexpert users. Some of
the program’s queries, for example, require expert knowledge to answer.
More generally, nonexperts advising British citizen hopefuls are not
alerted to alternative legal frameworks that complement the British Na-
tionality Act. Thus nonexperts—particularly in developing countries—
would be inclined to accept decisively the BNAP’s response to their client’s
situation. In such ways, the BNAP comes to act as an instrument of bias
against the nonexperts and their clients. Because this bias arises from a
shift in the population using the system from the one apparently held in
mind by the system’s creators (from expert to nonexpert users) we identify
this bias as emergent.
Another source for emergent bias can arise in the following way. At the

time of the BNAP’s initial implementation (1983) no mechanism was built
into the program to incorporate relevant case law as it came into being
[Sergot et al. 1986]. Should the accumulation of case law lead to changes in
the way the Act is interpreted—say, by granting new subgroups British
citizenship—BNAP would systematically misinform members of this sub-
group regarding their status as British citizens [Leith 1986]. Again, we
identify this bias as emergent because it depends on a shift in the social
context, in this instance one concerning knowledge within the legal commu-
nity. Emergent bias poses a potential problem for any legal expert system,
especially in a society where legal systems depend on evolving case law.
Indeed, to varying degrees, any expert system (independent of content
area) that does not possess a reasonable mechanism for integrating new
knowledge may be vulnerable to a similar form of emergent bias.

4. CONSIDERATIONS FOR MINIMIZING BIAS IN COMPUTER SYSTEM
DESIGN

As our framework helps delineate the problems of bias in computer
systems, so does it offer ways to remedy them. But, before saying more
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along these lines, it is important to address two potential concerns that the
reader may have about the framework itself.
First, as we have noted earlier, computer systems sometimes help

implement social policies on which reasonable people can disagree regard-
ing whether the policies are fair or unfair. Does the NRMP, for example,
embody a bias against rural hospitals? Other examples might include
affirmative-action hiring programs, tax laws, and some federal funding
programs. According to our framework, would computer systems that help
implement such discriminative policies embody bias? The answer follows
the initial (controversial) question—namely, “Is the policy under consider-
ation fair or unfair?” Does affirmative action, for example, help redress
past unfairness or not? The answer to most of these questions is beyond the
scope of this article. But we do say that if unfairness can be established in
the system’s systematic discrimination, then the charge of bias follows.
Second, although we have talked about bias in computer systems, the

presence of bias is not so much a feature inherent in the system indepen-
dent of the context of use, but an aspect of a system in use. This distinction
can be seen clearly in an example of emergent bias. Consider the case of an
intelligent tutoring system on AIDS whose intended users are to be college
students. Here, a high degree of literacy can be assumed without incurring
bias. In contrast, the same level of literacy cannot be assumed without
introducing bias in designing a system to provide AIDS education in a
public space such as a shopping mall or metro station. For in such public
spaces less educated people would be at an unfair disadvantage in using
the system. Or consider again the case of technical bias with the MLSA
(which favors users with short jobs over long jobs). While technical bias is
embedded in the program, the bias is a phenomenon of the system in use,
in a context wherein users with short and long jobs outpace the system’s
capacity.
Remedying bias from a practical perspective involves at least two types of

activities. One, we need to be able to identify or “diagnose” bias in any
given system. Second, we need to develop methods of avoiding bias in
systems and correcting it when it is identified. We offer below some initial
directions this work could take.
Toward minimizing preexisting bias, designers must not only scrutinize

the design specifications, but must couple this scrutiny with a good
understanding of relevant biases out in the world. The time to begin
thinking about bias is in the earliest stages of the design process, when
negotiating the system’s specifications with the client. Common biases
might occur to populations based on cultural identity, class, gender, liter-
acy (literate/less literate), handedness (right-handed/left-handed), and
physical disabilities (e.g., being blind, color-blind, or deaf). As the comput-
ing community develops an understanding of these biases, we can corre-
spondingly develop techniques to avoid or minimize them. Some current
computer systems, for instance, address the problem of handedness by
allowing the user to toggle between a right- or left-handed configuration for
user input and screen display. Similarly, systems could minimize bias due
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to color blindness by encoding information not only in hue, but in its
intensity, or in some other way by encoding the same information in a
format unrelated to color. In addition, it can prove useful to identify
potential user populations which might otherwise be overlooked and in-
clude representative individuals in the field test groups. Rapid prototyping,
formative evaluation, and field testing with such well-conceived popula-
tions of users can be an effective means to detect unintentional biases
throughout the design process.
Technical bias also places the demand on a designer to look beyond the

features internal to a system and envision it in a context of use. Toward
preventing technical bias, a designer must envision the design, the algo-
rithms, and the interfaces in use so that technical decisions do not run at
odds with moral values. Consider even the largely straightforward problem
of whether to display a list with random entries or sorted alphabetically. In
determining a solution, a designer might need to weigh considerations of
ease of access enhanced by a sorted list against equity of access supported
by a random list.
Minimizing emergent bias asks designers to envision not only a system’s

intended situations of use, but to account for increasingly diverse social
contexts of use. From a practical standpoint, however, such a proposal cannot
be pursued in an unbounded manner. Thus, how much diversity in social
context is enough, and what sort of diversity? While the question merits a
lengthy discussion, we offer here but three suggestions. First, designers should
reasonably anticipate probable contexts of use and design for these. Second,
where it is not possible to design for extended contexts of use, designers should
attempt to articulate constraints on the appropriate contexts of a system’s use.
As with other media, we may need to develop conventions for communicating
the perspectives and audience assumed in the design. Thus, if a particular
expert system because of its content matter, goals, and design requires expert
users to be used effectively, this constraint should be stated clearly in a salient
place and manner, say, on one of the initial screens. Third, system designers
and administrators can take responsible action if bias emerges with changes
in context. The NRMP offers a good example. Although the original design of
the Admissions Algorithm did not deal well with the changing social condi-
tions (when significant numbers of dual-career couples participated in the
match), those responsible for maintaining the system responded conscien-
tiously to this societal change and modified the system’s algorithm to place
couples more fairly [Roth 1990].
That said, even if a designer successfully detects bias in a proposed

design, and has ideas on how to eradicate or minimize it, a client may be
reluctant to remedy the bias for a variety of reasons. For example, airlines
executives whose companies serve national and international routes may
knowingly support the bias in an automated reservation system that favors
on-line flights. Situations such as these put designers in a difficult spot.
What ought they to do if a client actually wants a bias to be present? Is it
the designer’s responsibility to speak out against a client, or is it simply to
tow the line and produce a system, bias and all?
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Readers who have followed discussions of professional ethics will be
familiar with similar dilemmas. A quick answer is not possible, but one
thing is clear. In order for designers to take an effective stand against a
client regarding biased systems, it will be important for designers to find
support for such action from their professional community. The criteria of
reliability and safety offer a perspective on this point. Through extensive
discussion and solid technical work, the computing community over the
recent years has recognized that good systems must be judged on criteria
that include reliability and safety. Such consensus provides individual
system designers with substantial backing if and when they are required to
make their cases to skeptical clients or employers. Something similar is
needed for bias. The more the computing community explicitly recognizes
bias as a feature of computer systems that is worth addressing and
minimizing, the more individual designers will have clout in shaping the
practice of computing in the work place and elsewhere.
While we advocate serious attention to bias in system design, we also

recognize there are limits to what system designers can accomplish. Some
biases extend beyond computing to larger societal problems. An empirical
result from work by Huff and Cooper [1987] on gender-bias in the design of
educational software provides a helpful illustration. In their study, subjects
were asked to propose designs for software to teach seventh graders the
correct use of commas. One group of subjects was asked to design the software
for seventh-grade boys, the second group to design for seventh-grade girls, and
the third group to design for seventh-graders, gender unspecified. Huff and
Cooper report that along a number of dimensions the designs proposed by
subjects in the gender-unspecified group closely resembled the designs pro-
posed by subjects who designed for boys and were significantly different from
the designs proposed by subjects who designed for girls. This study illustrates
how preexisting biases, in the form of expectations about what software will
appeal to each gender, coupled with the implicit assumption that the generic
“user” of software is likely to be male, can influence design and give rise to
bias in software. Huff and Cooper report, furthermore, that many of their
subjects were aware of and had expressed open concern about how computers
were frequently perceived to be in the male domain. We thus infer that in this
case the biased designs were unintended and, instead, reflected gender-biases
deeply rooted in the culture at large. While creating nongender-biased educa-
tional software contributes to addressing the larger social problems tied to
gender bias and computing, resolving problems like gender bias go beyond
system design. More broadly, where biases in the larger society flourish,
bias-free system design forms but one part of a movement to a more equitable
society.

5. CONCLUSION

Because biased computer systems are instruments of injustice—though
admittedly, their degree of seriousness can vary considerably—we believe
that freedom from bias should be counted among the select set of criteria
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according to which the quality of systems in use in society should be
judged. The methods delineated here can be used to assess and minimize
bias in the design of systems. Concern with bias in system design and
experience with these methods can be integrated with other software
engineering methods as part of the standard for a computer science
curriculum.
As with other criteria for good computer systems, such as reliability,

accuracy, and efficiency, freedom from bias should be held out as an ideal.
As with these other criteria, this ideal might be difficult if not impossible to
achieve. Nonetheless, in practice we must approach actively the task of
minimizing bias in our designs. Furthermore, as a community we must
hold our designs accountable to a reasonable degree of freedom from bias
against which negligence can be judged.
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